(a) If your sweetening unit affected facility is located at an onshore natural gas processing plant and is subject to the provisions of § 60.5405(a) or (b) you must install, calibrate, maintain, and operate monitoring devices or perform measurements to determine the following operations information on a daily basis:
(1) The accumulation of sulfur product over each 24-hour period. The monitoring method may incorporate the use of an instrument to measure and record the liquid sulfur production rate, or may be a procedure for measuring and recording the sulfur liquid levels in the storage vessels with a level indicator or by manual soundings, with subsequent calculation of the sulfur production rate based on the tank geometry, stored sulfur density, and elapsed time between readings. The method must be designed to be accurate within ±2 percent of the 24-hour sulfur accumulation.
(2) The H2S concentration in the acid gas from the sweetening unit for each 24-hour period. At least one sample per 24-hour period must be collected and analyzed using the equation specified in § 60.5406(b)(1). The Administrator may require you to demonstrate that the H2S concentration obtained from one or more samples over a 24-hour period is within ±20 percent of the average of 12 samples collected at equally spaced intervals during the 24-hour period. In instances where the H2S concentration of a single sample is not within ±20 percent of the average of the 12 equally spaced samples, the Administrator may require a more frequent sampling schedule.
(3) The average acid gas flow rate from the sweetening unit. You must install and operate a monitoring device to continuously measure the flow rate of acid gas. The monitoring device reading must be recorded at least once per hour during each 24-hour period. The average acid gas flow rate must be computed from the individual readings.
(4) The sulfur feed rate (X). For each 24-hour period, you must compute X using the equation specified in § 60.5406(b)(1).
(5) The required sulfur dioxide emission reduction efficiency for the 24-hour period. You must use the sulfur feed rate and the H2S concentration in the acid gas for the 24-hour period, as applicable, to determine the required reduction efficiency in accordance with the provisions of § 60.5405(b).
(b) Where compliance is achieved through the use of an oxidation control system or a reduction control system followed by a continually operated incineration device, you must install, calibrate, maintain, and operate monitoring devices and continuous emission monitors as follows:
(1) A continuous monitoring system to measure the total sulfur emission rate (E) of SO2 in the gases discharged to the atmosphere. The SO2 emission rate must be expressed in terms of equivalent sulfur mass flow rates (kg/hr (lb/hr)). The span of this monitoring system must be set so that the equivalent emission limit of § 60.5405(b) will be between 30 percent and 70 percent of the measurement range of the instrument system.
(2) Except as provided in paragraph (b)(3) of this section: A monitoring device to measure the temperature of the gas leaving the combustion zone of the incinerator, if compliance with § 60.5405(a) is achieved through the use of an oxidation control system or a reduction control system followed by a continually operated incineration device. The monitoring device must be certified by the manufacturer to be accurate to within ±1 percent of the temperature being measured.
(3) When performance tests are conducted under the provision of § 60.8 to demonstrate compliance with the standards under § 60.5405, the temperature of the gas leaving the incinerator combustion zone must be determined using the monitoring device. If the volumetric ratio of sulfur dioxide to sulfur dioxide plus total reduced sulfur (expressed as SO2) in the gas leaving the incinerator is equal to or less than 0.98, then temperature monitoring may be used to demonstrate that sulfur dioxide emission monitoring is sufficient to determine total sulfur emissions. At all times during the operation of the facility, you must maintain the average temperature of the gas leaving the combustion zone of the incinerator at or above the appropriate level determined during the most recent performance test to ensure the sulfur compound oxidation criteria are met. Operation at lower average temperatures may be considered by the Administrator to be unacceptable operation and maintenance of the affected facility. You may request that the minimum incinerator temperature be reestablished by conducting new performance tests under § 60.8.
(4) Upon promulgation of a performance specification of continuous monitoring systems for total reduced sulfur compounds at sulfur recovery plants, you may, as an alternative to paragraph (b)(2) of this section, install, calibrate, maintain, and operate a continuous emission monitoring system for total reduced sulfur compounds as required in paragraph (d) of this section in addition to a sulfur dioxide emission monitoring system. The sum of the equivalent sulfur mass emission rates from the two monitoring systems must be used to compute the total sulfur emission rate (E).
(c) Where compliance is achieved through the use of a reduction control system not followed by a continually operated incineration device, you must install, calibrate, maintain, and operate a continuous monitoring system to measure the emission rate of reduced sulfur compounds as SO2 equivalent in the gases discharged to the atmosphere. The SO2 equivalent compound emission rate must be expressed in terms of equivalent sulfur mass flow rates (kg/hr (lb/hr)). The span of this monitoring system must be set so that the equivalent emission limit of § 60.5405(b) will be between 30 and 70 percent of the measurement range of the system. This requirement becomes effective upon promulgation of a performance specification for continuous monitoring systems for total reduced sulfur compounds at sulfur recovery plants.
(d) For those sources required to comply with paragraph (b) or (c) of this section, you must calculate the average sulfur emission reduction efficiency achieved (R) for each 24-hour clock interval. The 24-hour interval may begin and end at any selected clock time, but must be consistent. You must compute the 24-hour average reduction efficiency (R) based on the 24-hour average sulfur production rate (S) and sulfur emission rate (E), using the equation in § 60.5406(c)(1).
(1) You must use data obtained from the sulfur production rate monitoring device specified in paragraph (a) of this section to determine S.
(2) You must use data obtained from the sulfur emission rate monitoring systems specified in paragraphs (b) or (c) of this section to calculate a 24-hour average for the sulfur emission rate (E). The monitoring system must provide at least one data point in each successive 15-minute interval. You must use at least two data points to calculate each 1-hour average. You must use a minimum of 18 1-hour averages to compute each 24-hour average.
(e) In lieu of complying with paragraphs (b) or (c) of this section, those sources with a design capacity of less than 152 Mg/D (150 LT/D) of H2S expressed as sulfur may calculate the sulfur emission reduction efficiency achieved for each 24-hour period by:
Where:
R = The sulfur dioxide removal efficiency achieved during the 24-hour period, percent.
K2 = Conversion factor, 0.02400 Mg/D per kg/hr (0.01071 LT/D per lb/hr).
S = The sulfur production rate during the 24-hour period, kg/hr (lb/hr).
X = The sulfur feed rate in the acid gas, Mg/D (LT/D).
(f) The monitoring devices required in paragraphs (b)(1), (b)(3) and (c) of this section must be calibrated at least annually according to the manufacturer's specifications, as required by § 60.13(b).
(g) The continuous emission monitoring systems required in paragraphs (b)(1), (b)(3), and (c) of this section must be subject to the emission monitoring requirements of § 60.13 of the General Provisions. For conducting the continuous emission monitoring system performance evaluation required by § 60.13(c), Performance Specification 2 of appendix B to part 60 of this chapter must apply, and Method 6 must be used for systems required by paragraph (b) of this section.